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Abstract. Homogenization theory is used to calculate the macroscopic dielectric constant from the quantum
microscopic dielectric function in a periodic medium. The method can be used to calculate any macroscopic
constitutive relation, but it is illustrated here for the case of electrodynamics of matter. The so-called cell
problem of homogenization theory is solved and an explicit expression is given for the macroscopic dielectric
constant in a form akin to the Clausius-Mossotti or Lorentz-Lorenz relation. The validity of this expression
is checked by showing that the standard formula is recovered for cubic materials and that the average of
the microscopic energy density is the macroscopic one. Finally, the general expression is applied to Bloch
eigenstates.

PACS. 77.22.Ch Permittivity (dielectric function) – 78.20.Ci Optical constants (including refractive index,
complex dielectric constant, absorption, reflection and transmission coefficients, emissivity) – 03.50.De
Classical electromagnetism, Maxwell equations

1 Introduction

When light falls onto a crystal, the quantum interaction of
light with matter is represented locally by a microscopic
dielectric function ε(r, r′). To calculate the macroscopic
(homogeneous) dielectric constant, one considers that the
charge distribution created by the light polarizes the crys-
tal which, in turn, reacts by inducing an electric field that
modifies the charge distribution.

In quantum chemistry, this reaction field represents the
influence of the solvent on the solute [1–3]. Other descrip-
tions use the related concept of local fields [4,5], which
has been described, for disordered media, by a cluster ex-
pansion [6–9].

For periodic media, the local field effect was evaluated
in the early sixties by Adler [10] and Wiser [11]. How-
ever, many textbooks in solid-state physics still identify
the macroscopic dielectric constant ε̄ with 〈ε〉, the average
of the microscopic dielectric function ε(r, r′) over a unit
cell. Even the most cautious authors [12–14] do not go be-
yond the relation ε̄ = ε0(ε0 + 2〈ε〉)/(4ε0 − 〈ε〉), that goes
by the name of Clausius-Mossotti or Lorentz-Lorenz (see
Refs. [15–17] for a history of this relation). Since the local
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field effect can be quite large [18], its neglect can proba-
bly be attributed to the numerical burden of the standard
local field formula [10,11].

In this paper, homogenization theory will be used to
provide various alternative formulas for the calculation of
the local field effects. Homogenization theory is tailored to
calculate the macroscopic ε̄ from the microscopic ε(r, r′).
The major trick of the method is to expand all fields as
a series in ascending powers of the ratio of the lattice pa-
rameter over the wavelength of the external electromag-
netic field. Physicists have sometimes used such an expan-
sion [19], but mathematicians exploited it extensively and
turned it into a rigorous tool. Homogenization theory is
a branch of applied mathematics that started its expan-
sion in the late seventies [20,21] to understand the macro-
scopic properties of composite, porous, disordered, bubbly,
fibrous or layered materials. It is now a fully fledged the-
ory [22] that has been applied successfully in many areas,
such as mechanics, acoustics, electrostatics, fluid dynam-
ics, statistical physics, numerical analysis, materials sci-
ences, electromagnetism [23], petroleum geophysics [24],
shape-memory alloys [25] and pile foundation analysis [26].

This paper starts with an introduction to homogeniza-
tion theory, then the microscopic Maxwell equations are
homogenized to yield the macroscopic Maxwell equations
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and the constitutive relations. Since homogenization the-
ory is not a usual tool of solid state physics, the calcula-
tions in these sections will be given in detail. The rest of
the article will follow the elliptic style of normal research
papers. Various formulas will be given, corresponding to
different physical situations. Then, several desirable prop-
erties of the dielectric constant will be derived. It will be
shown that the macroscopic dielectric constant gives the
expected energy density and Poynting vector. The formal-
ism is adapted to the case of Bloch eigenstates and a band-
structure formula for ε̄ is given.

2 The point of view of homogenization theory

Ever since the nineteenth century, physicists have homog-
enized microscopic systems by performing averages over
distances very small compared to the macroscopic wave-
length and very large compared to the atomic dimensions.
Mathematical homogenization started when homogeniza-
tion was not considered any longer as an averaging op-
eration, but as a limit process. As an example, consider
that a microscopic quantity can be represented by the pe-
riodic function f(x) = sin x + b. To express the fact that
the oscillation is very fast, mathematicians tried to give a
meaning to the limit of f(x/a) as a → 0. In other words,
what is the limit of a periodic function when its period
becomes infinitely small?

The contact with the physical point of view comes from
the fact that the limit is the average of f(x) over a pe-
riod: f(x/a) → b as a → 0. However, Figure 1 shows
that this limit is somewhat unusual. Physicists generally
do not bother very much with the various mathemati-
cal limits, but in the present case, it is necessary to re-
alize that we do not deal with a strong limit, but with
a weak limit. Strong convergence of f(x) to its limit b,
which means that, for a fixed L,

∫ L

0
dx|f(x/a) − b| → 0

as a → 0, is clearly not realized for oscillating functions
(for our example,

∫ L

0
dx|f(x/a) − b| → 2L/π). Oscillat-

ing functions enjoy only weak convergence, which is de-
fined by the fact that, for any smooth function g(x),
∫ L

0 dxg(x)f(x/a) → b
∫ L

0 dxg(x) as a → 0. In physical
terms, the fast oscillations of f(x/a) are smoothed away
by measuring f(x/a) with a device having a finite resolu-
tion g(x).

Strong convergence enjoys many nice properties, for
instance the product of two strongly convergent functions
converges to the product of the limits, but no such thing is
available for weak convergence. In our example, the weak
limit of f2(x/a) is b2 + 1/2 and not b2. Since it is clear
that the average of the product of two functions is not
the product of the averages of the functions, the reader
may wonder why it is useful to consider homogenization
as a limit instead of an average. The advantage of homog-
enization as a limit is twofold. On the first hand, it leads
naturally to an asymptotic expansion of the functions in
terms of a (i.e. f(x/a) → b + af (1)(x/a) + · · · ), so that
corrections to the average become available. On the other
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Fig. 1. Limit of sin(x/a) + b as a→ 0.

hand, it enables us to treat not only functions but also
differential equations.

The way mathematical homogenization deals with dif-
ferential equations can be illustrated by a simple exam-
ple [20]. Consider a wire of length L, uniformly charged
with a constant charge density n. A potential V is applied
between both ends of the wire, and the wire is assumed
to have a periodic structure represented by the periodic
dielectric function ε(x/a). Standard electrostatic theory
tells us that there is a potential φ(x) such that the elec-
tric field e(x) = −φ′(x). The microscopic constitutive re-
lation is d(x) = ε(x/a)e(x), and the electrostatic equation
d′(x) = n gives us the equation (ε(x/a)φ′(x))′ = −n, with
the boundary conditions φ(0) = 0, φ(L) = V . For simplic-
ity, we assume that L corresponds to an integer number
of periods 2πa. This electrostatic equation has a unique
solution φ(x) for each a

φ(x) = C

∫ x

0

dt

ε(t/a)
,

where the constant C is determined by the boundary con-
dition φ(L) = V . From the previous discussion, we see
that φ(x) tends weakly to a function Φ(x) when a tends
to zero, such that

Φ(x) = C
1
ε̄

∫ x

0

dt = C
1
ε̄
x,

where 1/ε̄ is the weak limit of 1/ε(t/a). Therefore, Φ(x) is
the solution of (ε̄Φ′(x))′ = −n, with Φ(0) = 0, Φ(L) = V
and ε̄ is a constant. The surprising fact is that ε̄ is not
given by the average of ε(x) over a period, but by the
inverse of the average of 1/ε(x) over a period. Here, the
equation for Φ(x) was deduced from the explicit solution
for φ(x). However, in most problems, no explicit solution
is available. This is why homogenization theory was in-
vented.

In general, for a differential equation with rapidly os-
cillating coefficients, homogenization theory determines
whether the solution has a limit when the period tends to
zero, and to which equation the limit is a solution, without
knowing the solution of the first differential equation. This
is precisely the tool we need to derive constitutive relations
from a microscopic description of matter. Homogenization
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theory has shown that the macroscopic equation can be
strongly different from the microscopic one. For instance,
instantaneous microscopic equations can turn into equa-
tions with memory [27,28], local equations can develop
non-local macroscopic terms [29], mixtures of optically in-
active materials can become optically active [30,31].

3 Functional transformations

In this section, some functional transformations are intro-
duced.

For the purpose of homogenization, a function f(r)
is written as f(R, ρ), where the dependence of f is slow
for the variable R and periodic for the variable ρ. This
so-called two-scale correspondence can be done explicitly
as follows. Take a three-dimensional periodic lattice with
Brillouin zone BZ. Let C be the Wigner-Seitz cell of the
lattice and |C| its volume. The crystal sites will be denoted
by Rs, and the reciprocal lattice vectors by K.

Write the function f as a Fourier transform

f(r) =
∫

dq exp(iq · r)f̃ (q)

=
∑

K

∫

BZ

dq exp[i(q + K) · r]f̃(q + K),

where the integral over q was written as a sum over the
reciprocal lattices and an integral over the first Brillouin
zone. Define now

f̃(q, ρ) =
∑

K

exp(iK · ρ)f̃(q + K) for q ∈ BZ

f̃(q, ρ) = 0 for q /∈ BZ.

From the fact that exp[iK·Rs] = 1, it can be checked that
f̃(q, ρ + Rs) = f̃(q, ρ), so that f̃(q, ρ) has the periodicity
of the lattice in ρ. Then it is clear that

f(r) =
∫

BZ

dq exp(iq · r)̃f(q, r). (1)

If we define now

f(R, ρ) =
∫

BZ

dq exp[iq · R]̃f(q, ρ),

it is clear that f(R, ρ) has the lattice periodicity in ρ and
depends more slowly on R than on ρ. More precisely, ho-
mogenization is useful when the function f(r) varies slowly
from P to P ′′ (see Fig. 2), i.e. for two points that differ
by a (short) lattice vector and varies arbitrarily from P
to P ′ inside a cell. Then f(r) is transformed into f(R, ρ),
the ρ variable describes the fast variation of the function
inside the cell, and the R variable its smooth variation
from cell to cell.

This representation of a function of one variable by a
function of a fast periodic variable ρ and a slower variable

P

P"

P'

Fig. 2. P and P ′ are two points in the same cell, P and P ′′

are separated by a lattice vector.

R is the essence of the two scale analysis of homogeniza-
tion theory. Note also that if f(r) is slow, i.e. if the sup-
port of the Fourier transform f̃(q) is contained in the first
Brillouin zone, then f̃(q, ρ) = f̃(q) does not depend on ρ.

We shall not homogenize the Maxwell equations with
the usual two-scale function f(R, ρ), but with its Fourier
transform with respect to the slow variable R: f̃(q, ρ).
To establish a direct link between f̃(q, ρ) and f(r) and
for future reference, we shall make use of the standard
relations for infinite Born-von Kármán boundary condi-
tions [32] (which are derived from the Poisson summation
formula [33]):

∫

BZ

dq exp(iq · Rs) =
(2π)3

|C| δs,0

∫

C

dρ exp(iK · ρ) = |C|δK,0

∑

K

exp(iK · ρ) = |C|
∑

s

δ(ρ + Rs)

∑

s

exp(iq · Rs) =
(2π)3

|C|
∑

K

δ(q − K). (2)

An infinite Born-von Kármán boundary condition avoids
the subtle problems linked with the use of a finite Born-
von Kármán domain, for instance the question whether or
not the other domains contribute to the reaction field.

Using the definition of the Fourier transform we find

f̃(q, ρ) =
∑

K

exp(iK · ρ)f̃(q + K)

=
1

(2π)3
∑

K

exp(iK · ρ)
∫

dr exp[−i(q + K) · r]f(r)

=
1

(2π)3

∫
drf(r) exp(−iq · r)

∑

K

exp[iK · (ρ − r)]

=
|C|

(2π)3
∑

s

∫
drf(r) exp(−iq · r)δ(ρ − r + Rs)

=
|C|

(2π)3
∑

s

f(ρ + Rs) exp[−iq · (ρ + Rs)]. (3)
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For a function f(r), with two-scale transforms f̃(q, ρ)
and f(R, ρ), we define the averages over a unit cell by

〈̃f(q, ρ)〉 =
1
|C|

∫

C

dρf̃(q, ρ)

= f̃(q),

and

〈f(r)〉 = 〈f(R, ρ)〉 =
1
|C|

∫

C

dρ f(R, ρ)

=
∫

BZ

dqf̃ (q) exp(iq ·R).

Since q is in the first Brillouin zone, the average over
a unit cell has the effect of stripping all the high fre-
quency components off the Fourier transform of f . We
shall use this average to go from microscopic to macro-
scopic fields. The macroscopic fields will be microscopic
fields averaged over a unit cell, so that all Fourier com-
ponents of the macroscopic fields are zero when the argu-
ment is outside the first Brillouin zone. This definition
of macroscopic fields is common in the physical liter-
ature [10,11,15,34–36]. Notice also that 〈f(R, ρ)〉 and
〈̃f(q, ρ)〉 are Fourier transforms of one another. Therefore,
the macroscopic fields E(R) and E(q) obtained by aver-
aging the corresponding microscopic fields remain Fourier
transforms of one another. At first sight, it would seem
more natural to define a macroscopic by averaging directly
f(r) over a unit cell. In other words, if Rs is a lattice vec-
tor, we could define the macroscopic value of f at Rs by

f(Rs) =
1
|C|

∫

C

dρf(Rs + ρ).

However, this definition does not enjoy the nice mathe-
matical properties of our previous average. The difference
between the two averages is

f(Rs) − 〈f(Rs)〉 =
∫

BZ

dq exp[iq · Rs]

1
|C|

∫

C

dρ
(
exp(iq · ρ) − 1)̃f(q, ρ).

In practice q is determined by the wavelength λ of the
incident lightbeam and if a is a typical lattice parameter,
then the difference is of the order of a/λ, which is small in
the optical range. So the two averages agree for a visible
or UV lightbeam. This remark is due to Wiser [11].

By direct substitution, it can be shown that the two-
scale transforms of the gradient of f are (∇R +∇ρ)f(R, ρ)
and (iq + ∇ρ)̃f(q, ρ).

4 The microscopic Maxwell equations

To simplify the presentation, we consider a non magnetic
sample and we neglect the effect of spin (see Ref. [5] for the

full theory). Moreover, the electromagnetic charges, cur-
rents and fields have a time dependence exp(−iωt) which
will be implicit for notational convenience.

The random phase approximation of quantum elec-
trodynamics corresponds to the following picture [34].
An external electromagnetic wave Eext(r), Bext(r) polar-
izes the dielectric crystal, creating a current density j(r)
and a charge density n(r). These current and charge in-
duce an electric field e(r) − Eext(r) and a magnetic field
b(r)−Bext(r), that induce additional current and charge,
etc. When the medium and the field reach equilibrium,
the vacuum (rationalized SI) Maxwell equations describe
the connection between the total fields and the induced
charge and current densities:

∇ · e(r) = n(r)/ε0

∇× e(r) = iωb(r)
∇ · b(r) = 0

∇× b(r) + iωε0µ0e(r) = µ0j(r), (4)

where charge conservation implies ∇ · j(r) = iωn(r).
Linear response theory gives us the microscopic rela-

tion
j(r) = −iω

∫
dr′χ(r, r′) · e(r′), (5)

where the electric susceptibility χij has the well-known
expression [5,37–39]

χij(r, r′) = − e

mω2
n0(r)δijδ(r − r′)

+
e2

ω2

∑

n�=0

[
V 0n

i (r)V n0
j (r′)

�(ωn0 − ω)
+

V n0
i (r)V 0n

j (r′)
�(ωn0 + ω)

]

, (6)

where n0(r) is the charge density in the ground state, e is
the (negative) electron charge and m its mass. The veloc-
ity matrix elements are

V0n(r) = − i�

2m
[Ψ∗

0 (r)∇rΨn(r) − Ψn(r)∇rΨ
∗
0 (r)], (7)

where Ψ0(r) and Ψn(r) are eigenstates of the crystal. In
the one-electron case, the sum is carried out over the oc-
cupied (0) and unoccupied (n) states.

In expression (6), the first term, called the diamagnetic
term, depends only on the electronic density, and the sec-
ond (paramagnetic) term is usually much larger than the
first in the optical range [5].

Formula (6) for the susceptibility χ holds at zero tem-
perature. The corresponding formula for finite tempera-
ture involves a weighted sum over initial states [5]. All
the results of the present paper can be straightforwardly
adapted to the finite temperature case.

From the microscopic current j(r) it is customary in di-
electric theory to define the polarization p(r) = (i/ω)j(r)
and the displacement field d(r) = ε0e(r) + p(r). In terms
of those fields, the microscopic Maxwell equations become

∇× e(r) = iωb(r)
∇ · b(r) = 0
∇ · d(r) = 0

∇× b(r) = −iωµ0d(r), (8)
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where the microscopic constitutive relation is now

di(r) = ε0ei(r) +
∑

j

∫
dr′χij(r, r′)ej(r′).

The microscopic fields e(r), b(r) and p(r) are, as the
susceptibility χij(r, r′), rapidly oscillating functions of r.
The macroscopic fields E(R), B(R) and P(R) are aver-
ages of the corresponding quantities over a unit cell. The
constitutive relations problem is how to go from the re-
lation between p(r) and e(r) to a relation between P(R)
and E(R). Homogenization theory is a very convenient
way to solve this problem.

5 Homogenization of the microscopic
Maxwell equations

The derivation of the macroscopic Maxwell equations from
the microscopic ones is standard [12,15,40]. Hence, the
purpose of this section is just to show that homogeniza-
tion theory gives the known results and to derive equa-
tions that will be used in the next sections. The homog-
enization of the Maxwell equation has been thoroughly
studied by applied mathematicians [20–22,27,41–47] and
physicists [30,31]. However, the microscopic constitutive
relations that they used were always local: χij(r, r′) =
χij(r)δ(r − r′). We do not need the full apparatus of ho-
mogenization theory of non-local equations [48] and we
homogenize the Maxwell equations by a simple adapta-
tion of the method used for local dielectric functions.

In this section, we follow the very clear homogenization
procedure of Sanchez-Palencia [21], except that we work
with f̃(q, ρ) instead of f(R, ρ).

Using the fact that the two-scale transform of ∇f(r)
is (iq + ∇ρ)̃f(q, ρ), we can make the two-scale transform
of the Maxwell equations (8) to obtain:

iq× e(q, ρ) + ∇ρ × e(q, ρ) = iωb(q, ρ)
iq · b(q, ρ) + ∇ρ · b(q, ρ) = 0
iq · d(q, ρ) + ∇ρ · d(q, ρ) = 0

iq × b(q, ρ) + ∇ρ × b(q, ρ) = −iωµ0d(q, ρ). (9)

For notational convenience, we do not write the fields
e(q, ρ), etc, with a tilde.

Because they vary slowly, the possible “external” cur-
rents and charges would appear as j(q) and n(q), with no
dependence on ρ.

Consider a scattering problem where a plane electro-
magnetic wave is shined on the dielectric. In equations (9),
the order of magnitude of q will be 2π/λ, where λ is the
wavelength of the incident wave. The order of magnitude
of the unit cell dimensions is l = |C|1/3. Let a = l/λ, the
order of magnitude of ∇ρ ·e(q, ρ) is 1/a times the order of
magnitude of q ·e(q, ρ). Now we expand all fields as sums
of the type

e(q, ρ) = e(0)(q, ρ) + ae(1)(q, ρ) + a2e(2)(q, ρ) + · · · (10)

where all terms of the expansion are periodic in ρ. Since
a is small, we keep only the first term of the expansion to
define the macroscopic fields as E(q) = 〈e(0)(q, ρ)〉, etc.
The validity and asymptotic convergence of this expan-
sion is the main technical difficulty that was solved by the
mathematicians who homogenized the Maxwell equations
(see, for instance, Ref. [44] where the general term of ex-
pansion (10) is given). To be complete, we need to know
that the order of magnitude of ω is 2πc/λ, the order of
magnitude of b is e/c and the order of magnitude of d
is ε0e.

Introducing the expansions (10) into equation (9) and
gathering all terms of same power of a we obtain four
equations for the a−1 term:

∇ρ × e(0)(q, ρ) = 0

∇ρ · b(0)(q, ρ) = 0

∇ρ · d(0)(q, ρ) = 0 (11)

∇ρ × b(0)(q, ρ) = 0,

and four equations for the a0 term:

iq× e(0)(q, ρ) + a∇ρ × e(1)(q, ρ) = iωb(0)(q, ρ)

iq · b(0)(q, ρ) + a∇ρ · b(1)(q, ρ) = 0 (12)

iq · d(0)(q, ρ) + a∇ρ · d(1)(q, ρ) = 0

iq × b(0)(q, ρ) + a∇ρ × b(1)(q, ρ) = −iωµ0d(0)(q, ρ),

(recall that a∇ρ has the same order of magnitude as q).
These two sets of equations are sufficient to determine the
macroscopic Maxwell equations. Further terms would be
required if the wavelength were not very large with respect
to the unit cell dimensions.

To obtain the macroscopic Maxwell equations, we must
eliminate the terms of order one, e.g. b(1)(q, ρ). This is
achieved by transforming the cell average of the diver-
gence into an integral over the surface ∂C of the unit cell:
〈∇ρ · b(1)(q, ρ)〉 = 1/|C| ∫∂C n̂ · b(1)(q, ρ)dS. On opposite
sides of cell C, the outgoing normal n̂ is reversed while
b(1)(q, ρ) is equal (by periodicity). Therefore, the surface
integral is zero and 〈∇ρ ·b(1)(q, ρ)〉 = 0. A similar reason-
ing leads to 〈∇ρ × b(1)(q, ρ)〉 = 0.

Thus, averaging equation (12) gives 0= iq·〈b(0)(q, ρ)〉+
a〈∇ρ ·b(1)(q, ρ)〉 = iq·B(q), because the macroscopic field
B(q) was defined as the average of b(0)(q, ρ). Carrying
out similar calculations for the other microscopic Maxwell
equations we obtain the macroscopic Maxwell equations
in momentum space:

iq× E(q) = iωB(q)
iq ·B(q) = 0
iq · D(q) = 0

iq× B(q) = −iωµ0D(q). (13)
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Fourier transforming back to real space we obtain the
usual macroscopic Maxwell equations:

∇× E(R) = iωB(R)
∇ ·B(R) = 0
∇ · D(R) = 0
∇× B(R) = −iωµ0D(R).

Notice that this homogenization procedure can be ap-
plied directly to equations (9), but the present formulation
is required for consistency with the derivation of the con-
stitutive relations.

Homogenization now proceeds classically. We start
by homogenizing the magnetic field b(0)(q, ρ). From the
equation ∇ρ × b(0)(q, ρ) = 0 we deduce that there is a
periodic potential φ(q, ρ) and a function of q, denoted
by F(q), such that b(0)(q, ρ) = F(q) −∇ρφ(q, ρ). Taking
the average of both sides, and considering the periodic-
ity of φ we obtain 〈b(0)(q, ρ)〉 = F(q) [49] and, since the
left-hand side is defined as the macroscopic magnetic field
B(q), we get b(0)(q, ρ) = B(q) − ∇ρφ(q, ρ). Introduc-
ing this equality into ∇ρ · b(0)(q, ρ) = 0 we obtain the
equation ∆ρφ(q, ρ) = 0. The only periodic solution of the
Laplace equation is a constant [20], so φ(q, ρ) is a constant
and b(0)(q, ρ) = B(q). In other words, the magnetic field
does not need to be averaged, the zero-th order term of
b(q, ρ) is smooth and does not depend on ρ. The periodic
modulation is only reached at the next and smaller term
ab(1)(q, ρ).

Such an automatic averaging is not possible for the
electric field. Starting from ∇ρ × e(0)(q, ρ) = 0, the
only conclusion that we can reach at this level is that
there is a periodic potential φ(q, ρ) such that e(0)(q, ρ) =
E(q)−∇ρφ(q, ρ). The determination of φ will be the pur-
pose of the next sections, but this result has already an
interesting meaning. The zero-th term of the expansion of
e(q, ρ) is not smooth. In mathematical terms, the limit
of e(q, ρ) as a → 0 is still an oscillating function, con-
trary to our example f(x/a) = sin(x/a) + b. This concept
of “oscillating limit” was introduced by the Cameroonese
mathematician G. Nguetseng in 1989 [50] and has deeply
simplified homogenization theory [51].

6 The constitutive relation

Still, to give a complete description of the macroscopic
electromagnetic properties of matter, we have to establish
a correspondence between D(q) and E(q).

To do this, we use the periodicity of χ: for every lattice
vector R, χij(r + R, r′ + R) = χij(r, r′) [37]. Notice that
the same lattice vector must be added to both arguments
of χ.

We start from the relation between the polarization
and the electric field

p(r) =
∫

dr′χ(r, r′) · e(r′).

Then, we apply the two-scale transformation equation (3)
to find

p(q, ρ) =
|C|

(2π)3
∑

s

exp[−iq · (ρ + Rs)]

∫
dr′χ(ρ + Rs, r′) · e(r′).

Now the integral over all space is split into integrals over
translated unit cells:

p(q, ρ) =
|C|

(2π)3
∑

ss′
exp[−iq · (ρ + Rs)]

∫

C

dρ′χ(ρ + Rs, ρ
′ + Rs′) · e(ρ′ + Rs′).

If we introduce the two-scale expression (1) for the electric
field e(ρ) =

∫
BZ dq exp(iq · ρ)e(q, ρ) and use the period-

icity of e(q, ρ) in ρ we get

p(q, ρ) =
|C|

(2π)3
∑

ss′
exp[−iq · (ρ + Rs)]

∫

BZ

dq′
∫

C

dρ′

exp[iq′ · (ρ′ + Rs′)]χ(ρ + Rs, ρ
′ + Rs′) · e(q′, ρ′).

If we replace Rs by Rt +Rs′ and use the periodicity of χ
we obtain

p(q, ρ) =
|C|

(2π)3
∑

t

exp[−iq · (ρ + Rt)]
∫

BZ

dq′

∫

C

dρ′ exp(iq′ · ρ′)
∑

s′
exp[i(q′ − q) · Rs′ ]

χ(ρ + Rt, ρ
′) · e(q′, ρ′).

The sum over s′ is carried out with equation (2) and, since
q and q′ belong to the first Brillouin zone, only the term
K = 0 contributes. We reach finally

p(q, ρ) =
∑

s

∫

C

dρ′ exp[−iq · (ρ − ρ′ + Rs)]

χ(ρ + Rs, ρ
′) · e(q, ρ′)

= 〈χ̃(ρ, ρ′;q) · e(q, ρ′)〉ρ′ ,

where the index ρ′ designates cell average over variable ρ′,
and where we have defined the two-scale transform of χ
as

χ̃(ρ, ρ′;q) = |C|
∑

s

exp[−iq · (ρ − ρ′ + Rs)]χ(ρ + Rs, ρ
′).

(14)

It can be checked that χ̃(ρ, ρ′;q) has the lattice peri-
odicity for each variable ρ and ρ′ independently. A related
definition was used by Ehrenreich [34].

All quantities are now periodic and diagonal in q: they
are in a suitable form for homogenization. From the rela-
tion between polarization and electric field, we deduce the
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relation between displacement and electric field which will
be our starting point:

di(q, ρ) = ε0ei(q, ρ) +
∑

j

〈χ̃ij(ρ, ρ′;q)ej(q, ρ′)〉ρ′ . (15)

The macroscopic constitutive relation is obtained by
restricting all fields to the first term of expansion (10). If
we do this in equation (15) and write the electric field as
the sum e(0)(q, ρ) = E(q) −∇ρφ(q, ρ) we obtain

d
(0)
i (q, ρ) = ε0Ei(q) +

∑

j

〈χ̃ij(ρ, ρ′;q)〉ρ′Ej(q)

− ε0∂ρiφ(q, ρ) −
∑

j

〈χ̃ij(ρ, ρ′;q)∂ρ′
j
φ(q, ρ′)〉ρ′ . (16)

If equation (16) is averaged over ρ, the fact that
〈∂ρiφ(q, ρ)〉 = 0 [49] leads to the first step of the macro-
scopic constitutive relation:

Di(q) = ε0Ei(q) +
∑

j

〈χ̃ij(ρ, ρ′;q)〉ρρ′Ej(q)

−
∑

j

〈χ̃ij(ρ, ρ′;q)∂ρ′
j
φ(q, ρ′)〉ρρ′ . (17)

Following Wiser [11], a connexion with the classical
approach is possible through the introduction of a macro-
scopic local field Eloc(q) defined by

〈χ̃(ρ, ρ′;q)〉ρρ′ · Eloc(q) = 〈χ̃(ρ, ρ′;q) · e(q, ρ′)〉ρρ′ ,

so that D(q) = ε0E(q) + 〈χ̃(ρ, ρ′;q)〉ρρ′ · Eloc(q).
The next step is the determination of φ(q, ρ′). We take

the microscopic equation ∇ρ · d(0)(q, ρ) = 0 derived in
the previous section (Eq. (11)), and we apply it to equa-
tion (16). We obtain an equation for φ(q, ρ):

ε0∆ρφ(q, ρ) +
∑

ij

〈∂ρi χ̃ij(ρ, ρ′;q)∂ρ′
j
φ(q, ρ′)〉ρ′ =

∑

ij

〈∂ρi χ̃ij(ρ, ρ′;q)〉ρ′Ej(q). (18)

This so-called cell equation determines a unique periodic
solution φ(q, ρ) with zero average over a period.

We follow first the standard argument of homogeniza-
tion theory. Let the three functions Ak(q, ρ) (k = x, y, z)
be the solutions of the cell equation for an electric field
E equal to a unit vector in the direction k. Then, for
a general electric field E(q), the potential is φ(q, ρ) =
A(q, ρ) · E(q).

If we introduce this expression for φ(q, ρ) into equa-
tion (17), we obtain the macroscopic constitutive relation
Di(q) =

∑
j εij(q)Ej(q) where the macroscopic dielectric

constant εij(q) is given by

εij(q) = ε0δij +
∑

k

〈χ̃ik(ρ, ρ′;q)[δkj − ∂ρ′
k
Aj(q, ρ′)]〉ρρ′ .

This equation shows that the macroscopic dielectric
constant is the average of the microscopic dielectric func-
tion plus a correction term. In the case when the dielec-
tric function is a sum of constant factors localized at all
sites of a cubic lattice, it is a standard exercise of homog-
enization theory to show that the macroscopic constitu-
tive relation becomes the Clausius-Mossotti equation (see
Ref. [22], p. 45). Therefore, the correction term can be
quite large and should not be neglected.

Homogenization usually stops here, and the integro-
differential cell equation (18) can only be solved numeri-
cally, which seems to be a reasonable task. For instance,
the FLAPW approach could be used, where space is cut
into non-overlapping spheres plus an interstitial region.
φ(q, ρ) is then expanded over spherical harmonics (with
suitable radial functions) in the spheres and over plane
waves exp(iK · ρ) in the interstitial region. This reduces
the cell equation to a matrix equation.

However, the particular structure of χij(r, r′) can be
used to give an explicit solution for φ(q, ρ). This is the
purpose of the next section.

7 The cell problem

The cell equation (18) can be interpreted as follows. If
a constant electric field E(q) is applied to the dielectric,
linear response theory tells us that it induces a periodic
current given by equation (5)

j(q, ρ) = −iω〈χ̃(ρ, ρ′;q)〉ρ′ · E(q)

and the corresponding periodic charge is

n(q, ρ) = −(i/ω)∇ρ · j(q, ρ)
= −∇ρ · 〈χ̃(ρ, ρ′;q)〉ρ′ · E(q).

The last term is minus the right-hand side of equa-
tion (18). This periodic charge induces an additional elec-
tric field, that creates an additional polarization, and
φ(q, ρ) is the periodic potential (with zero average) which
represents the local electric field reached at equilibrium
under the influence of the external field E(q). In other
words, the cell equation (18) is the electrostatic equation
for the potential created in a unit cell of the dielectric by
an external field E(q).

With this picture in mind, we can solve the cell equa-
tion iteratively. We need the periodic electrostatic Green
function G#(ρ) which is a solution of ε0∆G#(ρ) = −δ(ρ)
in a unit cell. Some properties of G#(ρ) are discussed in
reference [22], p. 121,

G#(ρ) =
∑

K

exp(iK · ρ)
ε0|C|(|K|2 − iη)

=
∑

s

1
4πε0|ρ + Rs| , (19)

where η is an infinitesimal positive real.
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If the Green function is applied to both sides of equa-
tion (18) we obtain

φ(q, ρ) = − 1
|C|

∫
dτdρ′G#(ρ − τ)∇τ · χ(τ, ρ′;q) ·E(q)

+
1
|C|

∫
dτdρ′G#(ρ − τ)∇τ · χ(τ, ρ′;q) · ∇ρ′φ(q, ρ′).

An iterative solution of this equation can be written,
in simplified notation

φ = − 1
|C|G

#∇ · χ̃ ·E− 1
|C|2 G#∇ · χ̃ · ∇G#∇ · χ̃ ·E + · · ·

If we introduce our iterative solution in equation (17) we
obtain

D = ε0E + 〈χ̃ +
1
|C| χ̃ · ∇G#∇ · χ̃ + · · · 〉 · E. (20)

To be more explicit, we introduce the macroscopic sus-
ceptibility χ̄ij(q) and write equation (20) as D(q) =
ε0E(q) + χ̄(q) · E(q), where

χ̄ij(q) =
1

|C|2
∫

C×C

dρdρ′χ̃ij(ρ, ρ′;q)

+
1

|C|3
∑

mn

∫

C4
dρdρ′dτdτ ′χ̃im(ρ, τ ;q)

∂τmG#(τ − τ ′)∂τ ′
n
χ̃nj(τ ′, ρ′;q) + · · · (21)

or

χ̄(q) =

〈

χ̃(q) ·
[

1 − 1
|C|∇G#∇ · χ̃(q)

]−1
〉

ρρ′

.

7.1 Using the separable form of χ̃ij

To sum the right-hand side of equation (20), we need a
separable form for χ̃, akin to work of Cho [52] or the
coupled-antenna theory of Keller [5]. If we neglect the dia-
magnetic component of χ in equation (6), we can write it
in the separable form

χ̃ij(ρ, ρ′;q) =
∑

n

fn
i (ρ,q)gn

j (ρ′,q). (22)

Introducing this representation in equation (20), every-
thing decouples and we obtain Di(q) =

∑
j εij(q)Ej(q)

where the macroscopic dielectric constant εij(q) is now
given by

εij(q) = ε0δij +
∑

nn′
〈fn

i (ρ,q)〉[1 − M(q)]−1
nn′〈gn′

j (ρ,q)〉,

(23)

and where the reaction field matrix (or screening ma-
trix [53]) is defined as

M(q)nn′ = |C|
∑

ij

〈gn
i (ρ,q)∂ρiG

#(ρ−ρ′)∂ρ′
j
fn′

j (ρ′,q)〉ρρ′ .

(24)

Equations (23) and (24), giving an explicit expression
for the macroscopic dielectric constant, are the main result
of the paper. These equations can be useful when only a
few states n contribute to the susceptibility χ(ρ, ρ′;q)

Integrating equation (24) by parts and using the pe-
riodicity of all functions involved, we can derive an alter-
native form for the reaction field matrix M(q)nn′ , which
decreases the singularity of the derivative of G#:

M(q)nn′ = −|C|〈G#(ρ−ρ′)∇ρ ·gn(ρ,q)∇ρ′ ·fn′
(ρ′,q)〉ρρ′ .

An alternative summation of the series (20) can be
obtained by separating G#(ρ − ρ′) with equation (19). A
calculation similar to the foregoing one leads to

εij(q) = ε0δij + 〈χ̃ij(ρ, ρ′;q)〉ρρ′

+
∑

K,K′

′ 1
ε0|K||K′|

∑

mn

〈exp(iK · ρ′)∂ρ′
m

χ̃im(ρ, ρ′;q)〉ρρ′

(1 − N)−1
KK′ 〈exp(−iK′ · ρ)∂ρn χ̃nj(ρ, ρ′;q)〉ρρ′ ,

where the reaction field matrix is now

NKK′ =
1

ε0|K||K′|
∑

ij

〈exp(−iK · ρ) (25)

[∂ρi∂ρ′
j
χ̃ij(ρ, ρ′;q)] exp(iK′ · ρ′)〉ρρ′ . (26)

The notation
∑′ means that the sum is over all non-

zero reciprocal lattice vectors. To show that the terms
K = 0 or K′ = 0 do no contribute, we reintroduce the in-
finitesimal number −iη of equation (19) and, for instance,
the K′ = 0 term gives us (i/η)〈∇ρ · χ̃(ρ, ρ′;q)〉ρρ′ = 0,
because the average of a divergence is zero [49]. Similarly,
NKK′ is zero for K = 0 or K′ = 0. The last expression for
ε(q) is computationally effective when χ(ρ, ρ′;q) is smooth
and only a few K contribute.

Notice that equation (26) amounts to using the Fourier
transform of the susceptibility χ̃ij(ρ, ρ′;q). We do not dis-
cuss this approach further, since it has been used by many
authors [10,11,19,54,55]. It can be checked that equa-
tion (26) is equivalent to their results, in the limit where
a → 0.

7.2 Reaction field matrix

It is also possible to integrate equation (24) by parts to
apply both gradients to the Green function, but the dou-
ble gradient of the Green function has a singularity that
must be treated with care [56,57]. On the other hand, this
form has the advantage of recovering the usual dipole-
dipole interaction of classical dielectric theory [15] as will
be shown now. In equation (24), an integration by parts
transfers the derivative ∂ρ′

j
from fn′

j (ρ′,q) to G#(ρ− ρ′),
then ∂ρ′

j
G#(ρ − ρ′) = −∂ρj G

#(ρ − ρ′). Therefore, if we
define the matrix Green function G#(ρ − ρ′) by

G#
ij(ρ − ρ′) = ∂ρi∂ρj G

#(ρ − ρ′),
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the reaction field matrix becomes

M(q)nn′ = −|C|〈gn(ρ,q) · G#(ρ − ρ′) · fn′
(ρ′,q)〉ρρ′ .

To proceed, we write

G#(ρ − ρ′) = G0(ρ − ρ′) +
∑

s�=0

G0(ρ − ρ′ + Rs).

Frahm and Weiglhofer have shown that [56,57]

G0
ij(r) =

1
4πε0

∂ri∂rj

1
r

= − 1
3ε0

δ(r)δij +
1

4πε0

3rirj − r2δij

r5
. (27)

The first term gives the depolarization term of the classical
Lorentz theory [40], the second one is more delicate and is
not considered in the classical approach. Finally, we shall
need the multiple-scattering expression for G0(ρ−ρ′+Rs),
valid when |ρ| + |ρ′| < |Rs| (see Refs. [58,59] for this and
the most general cases).

G0(ρ − ρ′ + Rs) =
∑

�m�′m′
Y m

� (̂ρ)j�(ρ)H�m�′m′(Rs)

Y m′
�′

∗
(̂ρ′)j�′(ρ′)

where j�(ρ) = ρ�/(2� + 1)!! and

H�m�′m′(Rs) = −4π(−1)�C�′m′
�m�+�′m′−mY m′−m

�+�′ (̂Rs)

(2� + 2�′ − 1)!!
R�+�′+1

s

, (28)

with (−1)!! = 1 and where C�′m′
�m�+�′m′−m is a Gaunt coef-

ficient.
Because of the derivatives in the definition of G#(ρ−

ρ′), the terms � = 0 or �′=0 in equation (28) do not con-
tribute. Therefore, the cell-to-cell electrostatic interaction
begins with a 1/R3

s. In other words, there is no interac-
tion between the cell total electron charges (that would be
in 1/Rs), although the cells are not neutral. To be more
explicit, the cells are neutral if one considers the nuclei,
but the nuclei charges did not enter our description, and
their contribution to the dielectric function is very small
at optical energies. Therefore, there is no 1/Rs interaction
although only electrons are taken into account.

For an octahedral or a tetrahedral symmetry, group
theory tells us that

∑
s Y m

� (̂Rs) is zero for �=1, 2 and 3.
Therefore, the electrostatic interaction starts with a 1/R5

s

dependence.

8 Discussion

In this section, we would like to compare our results with
previous works and to discuss their physical consequences.

As a first difference, our formalism can be used to cal-
culate the index of non-cubic materials, whereas the stan-
dard approach deals only with cubic systems [10,11] (see,

however, reference [34] for the general case). Another dif-
ference is in the way the two approaches use the fact that
a/λ is small. The standard approach uses it to show that
the dielectric function is diagonal in q and at the end of the
calculation because only the K = 0 component of the in-
verse of the reaction field matrix is used. In our approach,
we use also the smallness of a/λ when we set up and in-
vert the reaction field matrix in equations (23) and (24).
This has a significant computational advantage. Taking
local field effects is very time consuming in the standard
approach [60] because the reaction field matrix that must
be inverted has matrix elements in the whole reciprocal
space [11].

In our approach the matrix is much smaller as we now
explain. In a band-structure calculation of the dielectric
susceptibility tensor, transitions are calculated between
occupied and empty states, thus in the quantities fn

i and
gn

j the index n is a packed form of the indices ko, no,ke,
ne labelling the occupied and empty states (see Sect. 9
for more details). Moreover, if the nonresonant term of
equation equation (6) is taken into account, another index
is required to distinguish the resonant and nonresonant
terms. In contrast to the standard approach, the reciprocal
space indices ko and ke are now in the first Brillouin zone.
The influence of the rest of the reciprocal space is taken
into account in the ρ dependence but the integral over ρ is
carried out before the inversion of the matrix M , whereas
in the standard procedure one must first invert a large
matrix and then take its K = 0 elements. This is why
the matrix to be inverted is much smaller. Moreover, the
two-scale transform χ̃ of χ implies that ke = ko ± q + K,
where K is a vector of the reciprocal lattice. In the visible
range q is very small and Umklapp processes can occur
only close to the surface of the Brillouin zone. Otherwise
we have the relation ke = ko ± q, that further limits the
size of the matrix M .

8.1 Electric dipole transitions

A further advantage of our formulation appears when we
are only interested in the contribution of electric dipole
transitions. To have a constitutive relation in the real
space, we back Fourier transform the equation D(q) =
ε(q) ·E(q) and we obtain

Di(r) =
∑

j

∫
dr′ε̄ij(r − r′)Ej(r′), (29)

where

ε̄ij(r − r′) =
1

(2π)3

∫
dq exp[iq · (r − r′)]εij(q). (30)

Equation (29) is typical of a homogeneous (but gener-
ally anisotropic) medium [37]. The fact that equation (29)
is non-local corresponds to spatial dispersion, which has
been much studied by the Russian school [37], and has
received renewed interest recently [61–64]. Besides, the
q-dependence of εij(q) can be observed experimentally by
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inelastic electron, X-ray or neutron scattering [65–67]. In
equation (30), it is not necessary to restrict the integral to
the first Brillouin zone since, by definition, εij(q) is zero
outside this zone.

If εij(q) is smooth near q = 0, it can be expanded in
a Taylor series

εij(q) = εij(0) +
∑

k

qk∂kεij(0) +
∑

kl

qkql∂k∂lεij(0) + · · ·

The first term corresponds to the electric dipole ap-
proximation, the second term describes optical activity,
the following term corresponds to electric quadrupole and
magnetic dipole transitions which are small in the optical
range [68]. When only the first term is kept, then equa-
tion (30) becomes ε̄ij(r − r′) = εij(0)δ(r − r′) and the
constitutive relation is now local D(r) = ε(0) ·E(r).

In most cases we are only interested in the electric
dipole contribution. In the standard approach, it is not
possible to take q = 0 in the reaction field matrix before
the inversion because a non-zero q is needed to determine
the transverse and longitudinal components of the dielec-
tric tensor [10]. This is not necessary here because we do
not decompose the dielectric tensor so that the limit q = 0
can be taken in (23) and (24) before the inversion of the
matrix M . This further reduces the computation time.

8.2 Connection with classical electrodynamics

For a physical understanding of our results, it is impor-
tant to see how they are related to classical electrody-
namics [40]. We consider the usual case of a cubic sys-
tem with one atom per unit cell. Firstly, the reaction of
the surroundings in classical electrodynamics is local and
the system is cubic. Therefore, χ̃ij(ρ, ρ′;q) is localized at
ρ = ρ′ = 0 and it is diagonal. To obtain a diagonal dielec-
tric constant χ̃ij(0, 0;q) = δijε0α we choose

fn
i = gn

i = δin
√

ε0α. (31)

In a cubic system, the second term of equation (27) is zero
so the reaction field matrix becomes

M(q)nn′ =
1

3ε0

∑

i

gn
i (0,q)fn′

i (0,q) =
1
3
δnn′α,

and the macroscopic dielectric constant becomes

εij(q) = ε0δij +
1

1 − α
3

∑

n

fn
i (0,q)gn

j (0,q)

= δijε0(1 +
α

1 − α
3

).

This is the classical relation between the microscopic and
the macroscopic polarizations [40].

On the other hand, one might wonder when the clas-
sical approximation is relevant for quantum calculations,
i.e. when equation (31) is satisfied. It is clear that this hap-
pens when the final states of the dipole transition can be

described with a single index n = 1, 2 or 3, without depen-
dence on the Brillouin zone vector k. This is the case for
a system that can be described by a tight-binding Hamil-
tonian with a ground state made of s-orbitals, so that the
final state of the absorption process are p-orbitals. A sim-
ilar conclusion was reached by Wiser [11].

8.3 Energy density

We would like to conclude this section with a discussion of
a subtle physical question, which is not addressed in the
standard approach. Macroscopic quantities are obtained
by averaging microscopic quantities. The energy density
is given microscopically by the product of the electric field
and the current. Both quantities exhibit fast oscillations
over the unit cell, so it is not obvious that the average of
the product can be written as a product of averages. We
show now that this is indeed the case in our approach.

The microscopic energy balance is [69]:

−
∫

drj(r, t) · e(r, t) =
1
µ0

∫
drb(r, t) · ∂b(r, t)

∂t

+ε0

∫
dre(r, t) · ∂e(r, t)

∂t
+

1
µ0

∫

Σ

e(r, t) × b(r, t) · dσ.

The definition of d(r) gives us

ε0
∂e(r, t)

∂t
=

∂d(r, t)
∂t

− j(r, t),

and the energy balance can be written
∫

dru(r, t) +
∫

Σ

s(r, t) · dσ = 0,

where the microscopic electromagnetic energy is

u(r, t) =
1
µ0

∫
drb(r, t) · ∂b(r, t)

∂t
+

∫
dre(r, t) · ∂d(r, t)

∂t
,

and the microscopic Poynting vector is

s(r, t) =
1
µ0

e(r, t) × b(r, t).

If we restrict the definition of the macroscopic fields to
the average of the first term in expansion (10), we want to
determine whether the average of the microscopic Poynt-
ing vector is equal to the macroscopic Poynting vector
S(r, t) = 1

µ0
E(r, t) × B(r, t), and whether the average of

the microscopic energy density is equal to the macroscopic
energy density. If this were not the case, the energy ar-
guments using the macroscopic Maxwell equations would
lack any microscopic basis.

For the Poynting vector, the answer is immediately yes,
because we have shown that b(0)(q, ρ) = B(q). Therefore
b(0)(r, t) = B(r, t), the magnetic field does not oscillate
rapidly, it is equal to its average and

〈s(r, t)〉 =
1
µ0

〈e(0)(r, t) × b(0)(r, t)〉

=
1
µ0

〈e(0)(r, t)〉 × B(r, t) =
1
µ0

E(r, t) × B(r, t)

= S(r, t).
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The proof is similar for the magnetic part of the en-
ergy density. However, the problem is more difficult for
the electric part, because it is a product of two functions
that oscillate very rapidly, and it is not obvious that the
average of the product is equal to the product of the av-
erages. We prove now that the average of the microscopic
energy density is indeed given by the usual macroscopic
formula.

First, we Fourier transform the fields in space and
time as

e(0)(r, t) =
∫

BZ

dq
∫

dω exp[i(q · r− ωt)]e(0)(q, r)

(the variable ω is still implicit for the fields).
We need to show that 〈e(0)(q′, ρ) · d(0)(q, ρ)〉 is equal

to the corresponding macroscopic product E(q′) ·D(q).
The microscopic displacement field d(0)(r,q) is given

by equation (16) and the electric field by e(0)(q, ρ) =
E(q) − ∇ρφ(q, ρ). The macroscopic displacement field is
given by equation (17), so that

〈e(0)(q′, ρ) · d(0)(q, ρ)〉 = E(q′) ·D(q)
−〈∇ρφ(q′, ρ) · χ̃(ρ, ρ′;q)〉ρρ′ · E(q)
+ε0〈∇ρφ(q′, ρ) · ∇ρφ(q, ρ)〉
+〈∇ρφ(q′, ρ) · χ̃(ρ, ρ′;q) · ∇ρ′φ(q, ρ′)〉ρρ′ ,

where we have used the fact that 〈∇ρφ(q, ρ)〉 = 0. Inte-
grating by parts to eliminate the gradient of φ(q′, ρ) we
obtain

〈e(0)(q′, ρ) · d(0)(q, ρ)〉 = E(q′) ·D(q)
+〈φ(q′, ρ)[∇ρ · χ̃(ρ, ρ′;q) ·E(q)
−ε0∆ρφ(q, ρ) −∇ρ · χ̃(ρ, ρ′;q) · ∇ρ′φ(q, ρ′)]〉ρρ′

= E(q′) ·D(q),

where the last step was derived using the cell equa-
tion (18).

A mathematical study of the convergence of the en-
ergy density was carried out for a local susceptibility by
Markowich and Poupaud [45].

9 Bloch wave functions

Many works are devoted to the calculation of the optical
response of semiconductors, using a band-structure ap-
proach. To deal with this case, we specify now our results
to the case of one-electron wavefunctions.

The Bloch theorem tells us that one-electron wavefunc-
tions in a crystal can be written exp(ik · r)ul(r;k), where
the index l runs over the bands. When this equation is
introduced into the velocity matrix elements (7), we find

Vll′ (r;k,k′) = − i�

2m
exp[i(k′ − k) · r]

(nl′,k′ − nl,k)Wll′ (r;k,k′),

where nl,k is the occupation of the lth band with Bloch
vector k and the periodic functions Wll′(r;k,k′) are

Wll′(r;k,k′) = u∗
l (r;k)∇ul′ (r;k′) − ul′(r;k′)∇u∗

l (r;k)
+i(k + k′)u∗

l (r;k)ul′(r;k′).

Neglecting the first and the last term in equation (6) we
find

χij(r, r′) = − e2
�

2

4ω2m2

∫
dkdk′ exp[i(k′ − k) · (r − r′)]

∑

ll′
(nl′,k′ − nl,k)

W ll′
i (r;k,k′)W l′l

j (r;k′,k)
El′ (k′) − El(k) − �ω

.

We treat now the electric dipole case q = 0. From
the definition of the two-scale transform of χ and from
identity (2) we find

χ̃ij(ρ, ρ′;0) = − (2π)3e2
�

2

4ω2m2

∫
dk

∑

ll′
(nl′,k − nl,k) (32)

W ll′
i (ρ;k,k)W l′l

j (ρ′;k,k)
El′ (k) − El(k) − �ω

. (33)

Therefore, in the electric dipole case, the transitions
are vertical. When spatial dispersion is investigated, then
the transitions are no longer vertical, they explore a part
of the bands around the vertical [62].

We can use the Schrödinger equation for ul and ul′ to
show that

∇ρ ·Wll′ (ρ;k,k) = −2m

�2
(El′(k) − El(k))u∗

l (ρ;k)ul′(ρ;k).

(34)

In reference [5], p. 121, Keller has proved that such a rela-
tion between ∇·V0n(r) and matrix elements of the density
operator holds also valid in the many-body case.

To use the macroscopic constitutive relation (23) we
must define a separable form (22) for χ̃ in equation (33).
We can choose

f ll′
i (ρ;k) = − (2π)3e2

�
2

4ω2m2
(nl′,k − nl,k)

W ll′
i (ρ;k,k)

El′ (k) − El(k) − �ω
,

g
l l′

j (ρ′;k) = W
l′ l
j (ρ′;k,k).

Finally, using identity (34) and the alternative definition
of the reaction field matrix M we find

M
ll′l l′

kk =
|C|(2π)3e2

(�ω)2
(nl′,k − nl,k)

(El′(k) − El(k))(El(k) − El′(k))
(El′ (k) − El(k) − �ω)

〈u∗
l (ρ;k)ul′ (ρ;k)G#(ρ − ρ′)u∗

l′(ρ
′;k)ul(ρ′;k)〉ρρ′ .

Because of the presence of the Bloch vector indices k
and k, the reaction field matrix is huge and its inversion
will be a heavy computation.
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All the ingredients are now given for a band-structure
calculation of the macroscopic dielectric constant in the
electric dipole approximation. The final formula is

ε̄ij = ε0δij − (2π)3e2
�

2

4m2ω2

∫
dkdk

∑

ll′l l′
(nl′,k − nl,k)

〈W ll′
i (ρ;k,k)〉[(1 − M)−1]ll

′l l′

kk 〈W l′l
j (ρ;k,k)〉

(El′(k) − El(k) − �ω)

A similar formula can be obtained for spatial disper-
sion (q �= 0), adapting the implementation described in
reference [70], where the Coulomb singularity and the
Umklapp processes are treated in detail.

10 Conclusion

Homogenization theory is usually used to calculate the
properties of “real” materials (porous, fibrous, disordered,
etc.). It is a somewhat just reward that applied physics can
also be useful to basic physics.

Here, homogenization theory was used to calculate the
macroscopic dielectric constant from the microscopic di-
electric function. Compared to previous works, our ap-
proach is not restricted to cubic materials and provides
new equations to describe the local field effect in di-
electrics. This article does not exhaust the prospects of
homogenization theory in solid-state physics. It is rather
a detailed presentation of the simplest possible case and
the present study can be developed in many directions.

A complete derivation of the macroscopic Maxwell
equations should also take magnetism into account. In
particular, the mysterious relation between microscopic
and macroscopic magnetic properties [71] could be han-
dled with homogenization theory, as well as the question
of the general form of the constitutive relations in bian-
isotropic media [63].

Further terms of the expansion can be calculated [44]
to investigate the case when the wavelength of the incident
wave is not very large as compared to the unit cell, as in
the VUV range and for some near-field optics or inelastic
scattering experiments.

We have considered an infinite crystal, but homoge-
nization theory can also treat finite crystals [47,50,51,72].
This is particularly interesting when the medium exhibits
spatial dispersion, i.e. q �= 0 in equation (23), because ad-
ditional boundary conditions can be required to determine
the waves inside the dielectric body [37,52,63]. Homoge-
nization theory is well suited to describe the boundary
layer that forms at the surface of the dielectric body, and
to derive the corresponding boundary conditions. To do
this, one adds to the bulk (periodic) functions a bound-
ary function that decreases exponentially out of the di-
electric [41,73]. Besides, the Bloch decomposition of the
electromagnetic field seems to be a promising alternative
for that purpose [46,72,74].

The present work was carried out within the linear
response approximation. Homogenization theory is fully
developed to deal with non-linear equations [22,47,75].

We have considered periodic media, but homogeniza-
tion theory applies also when the periodic structure varies
slowly [20] or in disordered or polycrystalline media [22].
This field is developing rapidly nowadays [76,77].

Finally, the method is not restricted to electrodynam-
ics and can be used to calculate any constitutive relation
corresponding to a microscopic non-local equation.

We are very grateful to Prof. Nathan Wiser for his detailed an-
swers to our questions concerning his article [11]. We thank M.
Ruiz-López, A. Bossavit and O. Keller who sent us reprints of
their works. We thank Ph. Sainctavit for his thorough reading
of the manuscript.
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